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Abstract

Steroidogenic factor 1 (SF-1), an orphan nuclear receptor, initially was isolated as a key regulator of the tissue-speci®c
expression of the cytochrome P450 steroid hydroxylases. Thereafter, analyses of sites of SF-1 expression during mouse
embryological development hinted at considerably expanded roles for SF-1, roles that were strikingly con®rmed through the
analyses of SF-1 knockout mice. These SF-1 knockout mice exhibited adrenal and gonadal agenesis, associated with male-to-

female sex reversal of their internal and external genitalia and death from adrenocortical insu�ciency. These ®ndings showed
unequivocally that SF-1 is essential for the embryonic survival of the primary steroidogenic organs. SF-1 knockout mice also
had impaired pituitary expression of gonadotropins and agenesis of the ventromedial hypothalamic nucleus (VMH), establishing

that SF-1 regulates reproductive function at all three levels of the hypothalamic±pituitary±gonadal axis. This article reviews the
experiments that have de®ned these essential roles of SF-1 in endocrine development and highlights important areas for future
studies. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Because of their essential roles in ¯uid and electro-

lyte balance, intermediary metabolism, resistance to

stress and sexual di�erentiation and reproductive func-

tion, a number of groups have studied the mechanisms

that regulate steroidogenesis. One approach has been

to study the gene regulation of the cytochrome P450

steroid hydroxylases (reviewed in Ref. [1]), which cata-

lyze most of the conversions within the steroidogenic

pathways [2]. These studies ultimately identi®ed a tran-

scription factor Ð steroidogenic factor 1 [(SF-1), also

called adrenal 4-binding protein (Ad4BP)] Ð that

interacts with conserved AGGTCA promoter elements

to regulate the coordinate expression of the steroid

hydroxylases within steroidogenic cells [3, 4]. The iso-

lation and characterization of cDNAs encoding this

protein revealed that this critical regulator of the ster-

oidogenic enzymes belongs to the nuclear hormone
receptor superfamily: transcription factors that mediate
transcriptional activation by steroid hormones, thyroid
hormone, Vitamin D and retinoids.

2. Insights into SF's function are revealed by its sites of
expression

To evaluate whether SF-1 played important endo-
crine roles in vivo, we ®rst de®ned the sites where it is
expressed. Consistent with its postulated role in steroi-
dogenesis, SF-1 transcripts in adult mice are detected
in the steroidogenic compartments of the adrenal
gland and gonads (i.e. adrenocortical, testicular Leydig
and ovarian theca and granulosa cells [5, 6]).
Surprisingly, SF-1 also is expressed in the anterior
pituitary gland [7, 8] and in a hypothalamic region
called the ventromedial hypothalamic nucleus
(VMH) [8, 9]. The expression of SF-1 in steroidogenic
cells is consistent with important roles in steroidogen-
esis, whereas its expression in the pituitary and hypo-
thalamus suggest additional actions within the
endocrine axis.
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Developmental studies in mouse embryos (Fig. 1)

also implicated SF-1 in the function of the primary

steroidogenic organs [10]. SF-1 transcripts are detected

in the adrenal primordium, the precursor to the adre-

nal cortex, from the earliest stages of its development

[0embryonic day 10.5 (E10.5)]. At E13±E13.5, when

the chroma�n cell precursors migrate into the adrenal

primordium to form the adrenal medulla, SF-1 ex-

pression localizes to the cortical region where steroid

hormones are produced.

The onset of gonadogenesis occurs at approximately

E9, when the intermediate mesoderm condenses to

form a structure called the urogenital ridge. Testes and

ovaries are indistinguishable at this time, and thus are

called indi�erent or bipotential gonads. As in the adre-

nal gland, SF-1 was expressed in embryos of both

sexes from the very earliest stages of

gonadogenesis [10±12]. Subsequently, the Y chromo-

some-encoded gene Sry directs development along a

sexually dimorphic pathway, such that testes are

formed. In contrast, in the absence of Sry, ovaries

develop and female sexual di�erentiation ensues.

Coincident with sexual di�erentiation, SF-1 expression

increases in testes, with expression in both functional

compartments: the testicular cords where fetal Sertoli

cells synthesize MuÈ llerian-inhibiting substance (MIS),

and the interstitial region where Leydig cells synthesize

androgens. The expression of SF-1 in the nonsteroido-

genic Sertoli cells suggests that SF-1 may have ad-

ditional roles in gonadal development that extend

beyond regulating steroidogenesis. In ovaries, in con-

trast, there is a distinct decrease in levels of SF-1 tran-

scripts coincident with sexual di�erentiation,

suggesting that SF-1 Ð if persistently expressed Ð
may impede normal female sexual di�erentiation.

Consistent with the results in adult mice, SF-1 also
is expressed in the embryonic diencephalon [9] Ð
which is the precursor to the endocrine hypothalamus
Ð and anterior pituitary [7]. These ®ndings, like the
expression of SF-1 by Sertoli cells, suggest that SF-1
has additional functions in development beyond its
roles in steroidogenesis.

3. SF-1 knockout mice reveal multiple essential roles in
endocrine development and function

Using homologous recombination in embryonic
stem cells, we produced SF-1 knockout mice, provid-
ing a novel system to study its roles in vivo. These SF-
1 knockout mice are born at a frequency of 25%,
establishing that SF-1 is not essential for prenatal sur-
vival. Consistent with their predicted inability to pro-
duce testicular androgens, all SF-1 knockout mice
have female external genitalia irrespective of genetic
sex. Consistent with their predicted inability to make
corticosteroids, they die within 1 week of birth and
have depressed corticosterone and elevated ACTH
levels [13, 14]. These ®ndings dramatically support the
essential role of SF-1 in the biosynthesis of steroid
hormones. What was not anticipated (Fig. 2) is the
absence of adrenal glands and gonads and male-to-
female sex reversal of the internal genitalia. These ®nd-
ings indicate that SF-1 is absolutely essential for the
development of the primary steroidogenic organs.
When examined histologically in timed pregnancies,
the earliest stages of urogenital ridge development

Fig. 1. Ontogeny of SF-1 expression in mouse embryos. The pro®le of expression of SF-1 transcripts in developing mouse embryos from embryo-

nic day 9 (E9) to E18 is schematically summarized. (+) indicates that SF-1 mRNA was present, (ÿ) indicates that transcripts were absent. The

arrows depict the approximate transition times between the di�erent stages of development. U.R. means urogenital ridge, VMH, ventromedial

hypothalamic nucleus. Reprinted with permission from Ref. [15].
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occur relatively normally in SF-1 knockout embryos;
at the precise time that sexual di�erentiation normally
occurs, the adrenal glands and gonads regress via a
pathway of programmed cell death.

As predicted from the expression pro®le of SF-1
(Fig. 1), the SF-1 knockout mice also have abnormal-
ities in their anterior pituitary and hypothalamus.
Immunoreactivities for luteinizing hormone and fol-
licle-stimulating hormone in the anterior pituitary are
diminished considerably [7, 8], linking SF-1 to a second
level of endocrine function. Finally (Fig. 3), the hypo-
thalamic nucleus where SF-1 normally is expressed Ð
the VMH Ð is completely absent in SF-1 knockout
mice of both sexes [8, 9]. Developmentally, the VMH
neurons migrate normally into the hypothalamic pri-
mordium, but die right at the end of the prenatal
period.

4. Summary and future directions

These studies have established multiple roles for SF-
1 within the endocrine axis. As summarized (Table 1),

SF-1 regulates a large number of target genes that are
essential for steroidogenesis and reproduction
(reviewed in [15]). For two of these genes (LHb [16]
and MIS [17]), transgenic promoter studies have
de®ned in vivo roles in regulating target genes. A
recent report extends these studies by showing that
SF-1 can direct uncommitted embryonic stem cells to
di�erentiate at least partially down the steroidogenic
pathway [18]. Future studies seek to identify the target
genes through which these developmental e�ects are
mediated. The known target genes of SF-1 are not suf-
®cient to account for the disappearance of the adrenal
glands, gonads and VMH. While it formally is possible
that the severe phenotype results from the simul-
taneous loss of multiple SF-1 target genes Ð none of
which by itself can cause the phenotype Ð it seems
more likely that new target genes will be identi®ed that
impinge on the cell cycle/proliferation pathways.

Another goal for future studies is to identify tran-
scription factors with which SF-1 cooperates to regu-
late target genes. Transcription factors that have been
reported to interact with SF Ð either functionally or
through direct heterodimerization Ð include Sp1 [19],
estrogen receptor [20], NGFI-A [21], cAMP-responsive
element binding protein [22], DAX-1 [23], Wilms
tumor 1 (WT1) [24] and PTX-1 [25]. Presumably, these
interactions help to determine the di�erential ex-
pression patterns of target genes within SF-1-expres-
sing cells. For example, genes such as steroid 21-
hydroxylase and the isozymes of steroid 11b-hydroxyl-
ase, well-characterized SF-1-responsive genes, are
expressed in the adrenal cortex, but not in the steroi-

Fig. 2. Newborn SF-1 knockout mice lack adrenal glands and

gonads and have female internal genitalia. SF-1 knockout mice (left)

and wild-type littermates (right) were sacri®ced and the genitourinary

tracts were dissected. (A) SF-1 knockout female, (B) wild-type

female, (C) SF-1 knockout male and (D) wild-type male. The scale

bar=1 mm. Reprinted with permission from Ref. [13]. k means kid-

ney; a, adrenal; o, ovary; t, testis; e, epididymis; and od, oviduct.

Table 1

Target genes for SF-1

VMH ?

Gonadotropes a-subunit of glycoprotein hormones

Luteinizing hormone b
GnRH receptor

Adrenal cortex cytochrome P450 steroid hydroxylases

3b-hydroxysteroid dehydrogenase

steroidogenic acute regulatory protein

ACTH receptor

SR-B1

Gonads

Leydig cells cytochrome P450 steroid hydroxylases

steroidogenic acute regulatory protein

prolactin receptor

Sertoli cells MuÈ llerian-inhibiting substance

Theca and granulosa cells cytochrome P450 steroid hydroxylases

steroidogenic acute regulatory protein

oxytocin
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dogenic cells of the gonads or the VMH neurons,
despite the fact that these cells all express SF-1.

Another important question is the role of ligands in
SF-1 action, SF-1, at its extreme carboxy terminus,
contains a sequence that closely resembles the AF-2
motif identi®ed in a number of ligand-activated
nuclear receptors [26]. This motif has been shown to
be essential for SF-1-mediated transcriptional
activation [27, 28], as well as for interactions between
SF-1 and coactivator proteins [28±30]. If this motif
truly correlates with ligand-inducibility, its presence in
SF-1 suggests that SF-1 also may be activated by be
ligands. Recent studies have shown that oxysterols,
particularly 25-hydroxycholestrol, increase SF-1-depen-
dent transcriptional activation in transient transfection
assays [27]. Although direct binding of oxysterols to
SF-1 has not been shown, and others have reported
that oxysterols do not activate SF-1 in mouse MA-10
Leydig cells [31], these ®ndings suggest that oxysterols,
or their derivatives, can induce SF-1 transcriptional ac-
tivation. Given that these compounds exist within ster-
oidogenic cells at concentrations approaching those
used in the transient transfection assays, they may con-

tribute to the `constitutive' actions of SF-1 in steroido-

genic cells.

A ®nal question is whether SF-1's role in mice, as

de®ned by the knockout analyses summarized here,

also extends to other species. Homologs of SF-1 have

been identi®ed in many other species, including ver-

tebrates (e.g. human [32, 33], chicken [34], Xenopus [35])

and invertebrates (e.g. Drosophila [36] and

silkworm [37]). This conservation of sequence implies

shared functions, at least in the di�erent mammalian

species where the basic principles of steroidogenesis

are quite similar. In accord with this model, the ex-

pression pattern of SF-1 in human tissues closely cor-

responds with that seen in mice [38]. Moreover,

preliminary analyses of SF-1 expression in human

fetuses indicate that SF-1 is expressed in developing

adrenal glands and gonads with a pro®le very similar

to that previously de®ned for mice (N. Hanley and T.

Strachan, personal communication). Thus, although

mutations in SF-1 have not yet been demonstrated in

human patients with abnormalities of sexual di�eren-

tiation, it seems likely that patients will be found with

Fig. 3. SF-1 knockout mice lack the ventromedial hypothalamic nucleus. Coronal sections from wild-type (lower left) and SF-1 knockout male

(upper right) and female (lower right) mice were stained with cresyl violet and photomicrographs were taken. A schematic diagram of the ana-

tomical regions found within these sections is shown (upper left). The scale bar=200 mm. mt, mammillothalamic tract; Do, dorsal hypothalamic

nucleus; 3V, third ventricle; DMH, dorsomedial hypothalamic nucleus; VMH, ventromedial hypothalamic nucleus; Arc, arcuate nucleus; ME,

median eminence. Modi®ed with permission from [9].
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clinical disorders resulting from mutations in the
human gene on chromosome 9q33.
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